Equilibrium Temperature with Greenhouse Gases

Equation for temperature change with altitude in the troposphere Γ is called the lapse rate for the troposphere.

$\Gamma=6.7-$ km

Average lapse rate for dry air in the troposphere

At this altitude, 95% of IR escapes to space without further absorption

We want to find what the altitude is for 95% escape of IR,

And the surface temperature of the Earth with greenhouse gases.

We will use a two system model of the atmosphere. The two systems being the troposphere and the stratosphere.

We will assume thermal equilibrium in the stratosphere.

Stratosphere

T_{S}

T_{t}

Troposphere

We will assume the troposphere is a blackbody, so

The radiation coming from the troposphere is

$$
I_{r a d}=\sigma T_{t}^{4}
$$

The intensity entering the stratosphere is either absorbed or transmitted (passes all the way through).

The intensity absorbed in the stratosphere is the intensity entering times the absorptivity of the stratosphere.

$$
I_{a b s}=\alpha \sigma T_{t}^{4}
$$

Solar Intensity

$I_{a b s}=\alpha \sigma T_{t}^{4}$

T_{s}

T_{t}

For thermal equilibrium, power in = power out

$$
P_{\text {in }}=P_{\text {out }}
$$

For $\mathrm{P}_{\text {in }}$ we need to multiply all the intensities going in by area

For $\mathrm{P}_{\text {out }}$, we need to multiply all the intensities going out by area.

$P_{\text {in }}=P_{\text {out }}$

$$
A \sigma T_{t}^{4}=A\left(2 \epsilon \sigma T_{s}^{4}+(1-\alpha) \sigma T_{t}^{4}\right)
$$

$$
\epsilon=\alpha, \mathrm{SO}
$$

$$
A \sigma T_{t}^{4}=A\left(2 \alpha \sigma T_{s}^{4}+(1-\alpha) \sigma T_{t}^{4}\right)
$$

$$
\sigma T_{t}^{4}=2 \alpha \sigma T_{s}^{4}+\sigma T_{t}^{4}-\alpha \sigma T_{t}^{4}
$$

$\sigma F^{t}{ }^{4}=2 \alpha \sigma T_{s}^{4}+\sigma F_{t}^{4}-\alpha \sigma T_{t}^{4}$

$0=2 \alpha \sigma T_{s}{ }^{4}-\alpha \sigma T_{t}^{4}$

$$
0=2 T_{s}^{4}-T_{t}^{4}
$$

$$
\begin{array}{r}
0=2 T_{s}^{4}-T_{t}^{4} \\
+T_{t}^{4} \quad+T_{t}^{4}
\end{array}
$$

$\mathrm{T}_{\mathrm{t}}{ }^{4}=2 \mathrm{~T}_{\mathrm{s}}{ }^{4}$

The temperature at which IR is escaping has to be 255 K because we have thermal equilibrium at this altitude with no absorption by greenhouse gases.

$$
\text { Thus } T_{t}=255 \mathrm{~K}
$$

And the answer is

$$
\mathrm{T}_{\mathrm{s}}=214 \mathrm{~K}
$$

Now let us find the altitude at which

$$
T_{t}=255 \mathrm{~K}
$$

$=-\Gamma$

Δz

$$
\frac{T_{f}-T_{i}}{Z_{f}-Z_{i}}=-6.7 \frac{{ }^{o} \mathrm{C}}{\mathrm{~km}}
$$

$$
T_{f}-T_{i}=-6.7 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{~km}}\left(z_{f}-z_{i}\right)
$$

The average top of the troposphere is $\mathrm{z}_{\mathrm{f}}=11 \mathrm{~km}$, so

$214 K-255 K=-73.7 K+6.7 \frac{\mathrm{C}}{\mathrm{km}} z_{i}$

$$
\begin{aligned}
& -41 K=-73.7 K+6.7 \frac{\mathrm{C}}{\mathrm{~km}} z_{i} \\
& +73.7 \mathrm{~K}+73.7 \mathrm{~K}
\end{aligned}
$$

$$
32.7 \mathrm{~K}=6.7 \frac{\mathrm{~K}}{\mathrm{~km}} z_{i}
$$

$$
z_{i}=\frac{32.7 \mathrm{~K}}{6.7 \frac{\mathrm{~K}}{\mathrm{~km}}}
$$

And the answer is

$$
\mathrm{z}_{\mathrm{i}}=4.9 \mathrm{~km}
$$

HOMEWORK:

1. Use $T_{f}=214 \mathrm{~K}$ and $\mathrm{z}_{\mathrm{f}}=11 \mathrm{~km}$ to
find the surface temperature of the
Earth with greenhouse gases.
If CO_{2} doubles in the atmosphere, the top of the troposphere is predicted to rise to
11.6 km . What would the surface
temperature of the Earth be then?
