GREENHOUSE GASES

Table of Greenhouse Gases

Туре	Pre-1750	2008	Atmospheric	Global	Increased
	tropospheric	tropospheric	lifetime	warming	radiative
(//////////////////////////////////////	concentration	concentration		potential	forcing
(//////////////////////////////////////					(W/m2)
CO ₂	280 ppm	383.9 ppm	≈ 100 years	1	1.66
Methane CH ₄	700 ppb	1857/1735	12	25	.48
()/////////////////////////////////////		ppb			
Nitrous oxide	270 ppb	321/320 ppb	114	298	.16
N ₂ O	///////////////////////////////////////				
Ozone O ₃	25 ppb	34 ppb	Hours-days	N.A.	.35
Sulfur	0	3.6 ppt	3,200	24,000	
hexafluoride	///////////////////////////////////////	///////////////////////////////////////			
SF ₆					
Water vapor	0-3x104 ppb	0-3x104 ppb	Days	?	?

Global warming potential is the amount of IR absorbed by one kilogram of a gas over 100 years compared to the IR absorbed by one kilogram of CO_2 over 100 years.

The GWP of CO₂ is arbitrarily taken to be 1.

Source: Scripps CO₂ Program, scrippsco2.ucsd.edu

http://www.mlo.noaa.gov/webmuseum/timeline/1986construction.html

http://www.mlo.noaa.gov/livedata/livedata.html

American Samoa

LAW DOME, ANTARCTICA ICE CORES

Global Anthropogenic Methane Emissions: 1860-1994 (Stern & Kaufmann)

Year

The main things to notice about the carbon cycle is that the natural cycle is almost in balance. The oceans and vegetation are both sources and sinks of CO_2 .

- •The oceans put out 90 GtC/yr and absorb 92 GtC/yr
- •The soil and vegetation put 121.6 GtC/yr and absorb 121.3 GtC/yr.

•The oceans, soil, and vegetation absorb 1.7 GtC/yr more than they put out.

Humans put out 5.5 GtC/yr but absorb **no** CO_2 . Thus the CO_2 we put into the atmosphere builds up except for the small net absorption by other means.

Source: earthobservatory.nasa.gov/Features/CarbonCycle/carbon_cycle4.php